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In the solutions corresponding to cases a), and ci, the 
pressure falls with distance from the centre of the gas ellip- 
soid. These solutions do not have any singularities, since 
63d"=&>O. In case b) the cloud moves due to the action of 
the external pressure, which varies with time as given by (1.3). 

As can be seen from (4.4) ,C, vanishes along the line L, 

specified by the equation 

h,2 + h,2 - h,?h,' - 4 = 0 

and splits the region B into two subregions (see the figure). 
For a point lying in region B above the line L,Cs<O, i.e. a 
singularity (d=O) must necessarily occur in the solutions 
coxresponding to it, namely, a state in which the volume of the 
cloud vanishes, while the density and pressure become infinite. 
For points lying below L,. Cs>O, i.e. d does not vanish; the 
rotation and internal vorticity of the gas cloud prevents its 
collapse. 

A complete picture in the (&,&a) plane is obtained after symmetric reflection of regions 
A, B, and C in the straight line & = &+ and of the line L into regions A', B', and C' 
and the line L' respectively. 
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RELATIVISTIC PRANDTL- MEYER FLOW* 

N.I. KOLOSNITSYN and K.P. STANWKOVICH 

The exact solution of the equations of relativistic gas dynamics describing 
plane steady-state flow, depending only on the angular variable, is 
investigated. The well-known Prandtl-Meyer solution is obtained in the 
non-relativisitic limit. 

The problem of constructing relativistic Prandtl-Meyer flow has been 
considered in /l-3/. A solution was obtained in /l/, by direct integra- 
tion of the equations, describing the limiting case of ultrarelativistic 
flow. In /2, 3/, to obtain relativistic Prandtl-Meyer flow, the method 
of replacement of variables proposed in /4/ was used, by means of which 
the equations of relativistic hydrodynamic were reduced to Newtonian form 
for a certain auxiliary gas with a variable isentropy index. Using this 

*Prikl.Matem.Hekhan.,48,1,143-145,1984 
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method ultrarelativistic flow was considered in /2/, and a solution was 
obtained,in /3/ for a one-component ideal gas with the equation of state 

/5/. The use of the variable proposed in /4/ does not remove the problem 
of integration, so that in a number of cases it may be preferable to 
integrate the initial equations of relativistic gas dynamics directly. 
We used this method here, i.e., by direct integration of the equations of 
relativistic gas dynamics we obtain an accurate solution describing 
Prandtl-Meyer flow of an ideal gas with an arbitrary isentropy index. 

The equations of relativistic gas dynamics for isoentropic flows can 
be written in the generally accepted notation as follows /6/: 

(1) 

Consider plane steady-state flow, which depends solely on the angular variable 8 . Chang- 
ing in (1) to a cylindrical system of coordinates and retaining the dependence solely on 13, 
we arrive at the following set of equations: 

du 
lo--&, *+-$(+)=o, +nst 

to which the following relation is connected: 

82 = 1 - (U' + ID')/? (3) 

Here u and ware the radial and tangential components of the velocity. The set of equa- 
tions (2)-(3) is closed by the isentropy equation pvk= const. 

The second equation (2) is equivalent to the equation 

dw 
“+w-W (4) 

Introducing the velocity of sound a and taking the third equation of (2) into account, 
we can convert (4) to the form 

On the other hand, by differentiating (3) and taking the third equation of 
account, we obtain 

++~)++-~)~=O 

Multiplying (5) by w, subtracting (6) from the result, and assuming that 
we obtain 

(5) 

(2) into 

(6) 

d In W/d0 # 0, 

(7) 

The Bernoulli equation (the third equation of (2)), taking into account the relationship 
between the enthalpy and the velocity of sound 

(8) 

can be written in the form 

(q is the maximum flow velocity, which is reached at the liquid-outflow boundary when n = 0). 
Equations (8) and (9) in terms of US and UJ* form a set of linear algebraic equations. 

Solving them we obtain 

-$- = i -F*(a), IL+ = a’F* (a) (10) 

F* (a) = (i - $) (1 - $)-I (i_ & f)-” 

Taking these relations into account, we obtain from the first equation of (2) the quad- 
rature 
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which defines the relationship between a and 8. Further, using (10) we obtain ~(8) and ~(0). 
and then all the remaining characteristics of the relativistic Prandtl-Meyer flow. 

Consider some limiting cases. 
For non-relativisitic flow (q/c<l,aic<l) , it follows from (11) that 

?_ 
Cl+& =*I/ *arcsin 

(V- 
kfla 
-- k-l q 1 

In non-relativistic flow a2= way and hence, changing from the inverse to the direct func- 
tions, we obtain 

12) 

i.e., we obtain the well-known Prandtl-Meyer solution /7/. 
To change to the ultrarelativistic limit, we must integrate by parts in (11). We obtain 

e+-eo=* G~csin F(a)fc 
s 

arcsin F (a) -$ (13) 

In an ultrarelativistic gas, the velocity of sound is constant, so that the integral in 
(13) must be understood in the Lebesgue sense. This integral is taken over a bounded and 
measurable function in a set of measure zero and is equal to zero. Finally, using (10) and 
the well-known value of the velocity of sound a= dk we obtain 

(14) 

which agrees with the corresponding solutions obtained for ultrarelativistic flow in /l, 2/. 
In conclusion, we will obtain a solution for ultrarelativistic flow by the method used 

in /4/. In the variables employed by Shikin /4/, the relativistic equations for an ideal gas 
with isentropy index k can be reduced to the equations of Newtonian gas dynamics for a gas 
with a variable isentropy index k., which, as can be shown, is equal to 

k, = k 5 [(L? -k) $ + (k - 1)1-l 

In the ultrarelativistic case Wlc*>i, and from (15) we have 
k, = k/(2 - k) = const 

The effective isentropy index is constant, and so we can use the formulas of ordinary 
relativistic Prandtl-Meyer flow (12), completing them by making the replacement of variables 

k - k. = k/(2 - k), q - c 
Equations (12) then reduce to (14) for ultrarelativistic flow. 
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